

Do you want to play with Apoptosis?

Here it is a background written for you.

The pseudo-hacker
Renato Mite

When the going gets geek,

the geek gets going.

Renato Mite

THE PSEUDO-HACKER

English game Kit

The background

How to play

Manual of pseudocode

Example of algorithm

Matt's notes

Matt's solution

© Renato Mastrulli

All rights reserved

The pseudo-hacker

 www.renatomite.it I

The background

In the first section of Apoptosis, the hacker Matthew Jaws has been kidnapped

because he can manipulate P.A. Net1 and hit anybody uses a PNS2. The kidnappers

want Matt to kill a fellow of theirs, Edward Gortins, that is currently locked up in

prison. Even prisoners are subject to health check with PNSes connected to HOB's

net. Matt has breached the prison computer system and has sent some shocks to

the hearth of the man in order to not make kidnappers suspicious. Now the health

of Gortins is precarious and Matt buys time.

The kidnappers fear that Gortins reveals their dirty business any minute now and

they do not want to wait anymore, they decide to kill the man in the prison

infirmary the old way. Matthew has eavesdropped the intentions of the kidnappers

when one of them, the stocky one, made a phone call while he was in the bathroom.

Before being locked up, Matt sends you his notes and a message:

"I have to save the life of a man, I have to write an algorithm to signal a false

health alarm using his PNS. Look at my notes. I'll be back online in less than

twenty minutes, I'll have little time and I need a working algorithm."

Matt is thinking about a solution, but he is also preparing his escape, he has little

time. Before escaping he wants to access again the server he uses to manipulate

P.A. Net and wants to save Edward Gortins drawing doctors' attention to him so the

man cannot be approached by the killer.

Do you want to help him?

1 P.A. Net stands for Public Anamnesis Net, the net of HOB company with which they gather and
handle health information for the PNS users.
2 Here PNS stands for Pathoneuroscope, that is a device that performs the analysis of human
health status through body neural system.

The pseudo-hacker

 www.renatomite.it II

How to play

The solution of this game is an algorithm, that is a sequence of instructions to

perform an action or to resolve a problem, in this case to mislead a PNS.

Writing instructions in pseudocode means writing phrases that describe the

operations to do step by step like "shift into first gear, turn the key, [etc.]". Writing

pseudocode as programmers means writing instructions such those of a

programming language and you will see how it is easy in the short manual of

pseudocode.

The algorithm can contain comments and be accompanied by a short description

that explains its functioning.

Matt's notes will give you all the necessary information and his tips to write the

operations that will set off the alarm.

Now choose how to play.

Challenge Matt and write an algorithm no longer than 50 lines of code, excluding

comments, and, if you want, a description no longer than 2000 characters that

explains it.

Then you can confront yourself with his solution at the end of the kit.

Challenge your friends, you all choose how to write the algorithm, how many lines

of code to write and even how much time you got, choose if the winner is the one

who comes up with the most original solution, the solution most similar Matt's or,

comparing them, the solution that would work better.

Challenge everybody else, share your solution with the hashtag #aphgame and

confront yourself with other players.

Which is your challenge?

Manual of pseudocode

 www.renatomite.it P-1

Manual of pseudocode

When you read the rules of a game, you are reading pseudocode, that is a series of

phrases describing what to do. In the same way, you can write instructions to tell

Matt how set off the false alarm.

As an example, here it is an algorithm that tells what to do driving a car when

approaching a traffic light.

function atTrafficLight()
 if light is red
 slow down
 stop
 if otherwise light is yellow and not flashing
 slow down
 stop
 end-if
 wait for green light or right of way
 # at this point the car can pass
 pass
end function

Believe it or not, that's pseudocode.

Writing pseudocode is funnier than resolving problems for Math lessons and simpler

too. The manual establishes the conventions to follow Matt's notes and write

instructions that interact with the PNS. So the manual allows to compare your

solution with the solution by Matt and by other players.

If you studied a little of Math and you know what a car is, it will be easy to

understand the examples and the function atTrafficLight() written at end of

the manual.

Comments

Each row of an algorithm is an instruction to be executed, whereas phrases

preceded by # (hash mark) are not instructions but indications that the programmer

uses to make the algorithm clearer.

Example: # This is a comment, not an instruction of the algorithm

Manual of pseudocode

 www.renatomite.it P-2

Values, Constants, Variables

For simplicity, the values to be used are only:

- numeric (number)

- boolean (bool) namely a value that is true or false

- null (null), object, array: these ones will be explained later.

The constants are names assigned to values that do not change in order to identify

them in a more comprehensible way.

The variables are containers where you keep the values with which you do actions

or calculations, like for example the tank of a car that keeps the fuel with which you

make the engine run.

The name of variables and constants consists only of letters, numbers and symbols

hyphen (-) and underscore (_); the name of variables starts with a letter; the name

of constants starts with the symbol underscore (_).

To create a constant, you could write a phrase like this one:

 create constant number _tankCapacity with value 50

that means assigning the name _tankCapacity to numeric value 50 (litres), but

programmers use more concise instructions, like this one:

 const number _tankCapacity = 50

The convention for the constants is: "const", the type of value, the name, the

assignment operator (=) and the value in this order.

Variables can contain a value from the beginning or not. The convention for the

variables is: "var", the type of value, the name, then the assignment operator (=)

and the value follow if they are present, in this order.

 var number liters-to-buy

 var number km-to-go = 35

 liters-to-buy = 10

Manual of pseudocode

 www.renatomite.it P-3

Objects, Arrays, Properties, Functions

Variables can contain also an object or an array of objects. As in the reality, an

object is an entity that has constants, characteristic values (called properties by

convention) and actions to do or undergo (called functions).

For example the car is an object, if we establish by convention that car is the type

that defines a car, we can create a variable for this object.

 var car kitt

Which car does kitt represent? The supercar? As it is written it does not represent

any car, therefore it has a null value (null). Instead in this way:

 kitt = MyCar

the variable kitt represents (contains) for example your car.

The properties of an object are variables that belong to it with which you can get

(get) its values, for example the year of registration, or even set (set), for example

the number of litres in the tank.

The functions are algorithms that can act with or without other values, can return a

result or do an action without returning a result (null functions).

In the notes, Matt describes the objects and arrays you can use with their respective

functions, specifying the required values and type of result, and their respective

properties, specifying the type of value, if you can get (get) and set (set) it.

The belonging of constants, properties and functions to an object is indicated with .

(dot) after object's name; after the name of a function there are round brackets that

eventually encase the values required. The constants can be used with the name of

the type too.

Examples: object.property object.function()

 object._constant type._constant

Manual of pseudocode

 www.renatomite.it P-4

Imagine a car object that has a property numberOfGears with number of

available gears and a function shiftGear that shifts into the gear specified, here

they are the instructions to get the number of gears and shift into first gear

var car kitt = MyCar

var number gears

gears = kitt.numberOfGears

kitt.shiftGear(1)

How do you know which type of property numberOfGears is?

You need to read the definition of the property.

Here it is an example of what you would find in the notes:

number get prop numberOfGears

The property gets the number of gears of the car.

How do you know which values the function shiftGear requires?

You need to read the definition of the function in the notes.

As an example, for the shiftGear you would find:

bool func shiftGear (number gearNumber)

The function shifts into the gear indicated by

gearNumber and returns true if the gear is engaged.

An array of objects is like a filing cabinet that gathers objects of the same type and

keeps them in order.

For example you create an array of objects wheel that can contains 5 objects in this

way:

var wheel wheels[5]

The objects contained in an array are retrieved with the index inside square

brackets, that is the number of position in the order, or, when it will be specified,

with an identification number inside round brackets.

Manual of pseudocode

 www.renatomite.it P-5

Going back to the example of the car, the objects wheel are gathered in the array

wheels that belongs to the car. Every object wheel has its properties, for example

pressure that gets or sets the value of wheel's pressure.

Do you want to know the pressure of the first wheel? You can write:

var car kitt = MyCar

var number first-wheel-pres

first-wheel-pres = kitt.wheels[0].pressure

Why 0? Because the index starts from 0 by convention.

If you find an indication like this one in the notes:

 wheels array of wheel [] (number serial)

it means that you can interact with a wheel also with its serial number:

var car kitt = MyCar

var number p

p = kitt.wheels(76450927).pressure

This is useful if the tire dealer tells you to check the pressure of the wheel with serial

number 76450927 because it could belong to a defective lot and you do not know

the index.

Even the arrays can have properties and functions, among them there is the

property length that gets the number of objects it contains.

As an example, with car.wheels.length you get the number of wheels that a car has,

in this case you know that it is five (the spare one is in the trunk), but when you do

not know how many objects an array contains and you want to know the index of

the last item, you can calculate it easily.

Example: var number last-wheel-index

 last-wheel-index = (kitt.wheels.length - 1)

Manual of pseudocode

 www.renatomite.it P-6

Operations

To solve a problem, often you need to do operations and therefore you need some

operators. The mathematical operators such as addition (+), subtraction (-), etc. are

well known, in programming languages there are other operators and there are only

round brackets to group and sort operations.

Here the operators available in the game are described.

Assignment operator

This is the operator seen until now for constants, variables and properties.

x = a Assigns to x (constant, variable, property) the value of a (value, constant,

variable, property, result of a function, result of another operation).

Mathematical operators

a + b Calculates the sum of the values a and b

a - b Calculates the difference between the value a and the value b

a * b Calculates the multiplication of the values a and b

a / b Calculates the integer quotient of the division between the values a and b

a % b Calculates the remainder of the division with integer quotient between

the values a and b

a // b Calculates the decimal quotient of the division between the values a and b

a ^ b Calculates the power of a raised to b

Examples:

var number liters-to-buy

var number cost

liters-to-buy = kitt._tankCapacity - kitt.liters-in-tank

cost = liters-to-buy * 1.80

There is a variant of mathematical operators that allows you to assign the result of

the operation to the variable that appears before the operator.

Manual of pseudocode

 www.renatomite.it P-7

For example, if you want to buy 3 liters more and put them in a tin, you can

calculate in this way:

liters-to-buy = liters-to-buy + 3

or in this way:

liters-to-buy += 3

Mathematical operators with assignment

a += b Assigns to a (variable or property) the sum of the values a and b

a -= b Assigns to a (variable or property) the difference between the value a and

the value b

a *= b Assigns to a (variable or property) the multiplication of the values a and b

a /= b Assigns to a (variable or property) the integer quotient of the division

between the values a and b

a %= b Assigns to a (variable or property) the remainder of the division with

integer quotient between the values a and b

a //= b Assigns to a (variable or property) the decimal quotient of the division

between the values a and b

a ^= b Assigns to a (variable or property) the power of a raised to b

Comparison operators

These operators compare two values and return a bool value true if the

comparison is correct, otherwise they return false.

a == b Returns true if a is equal to b

a < b Returns true if a is less than b

a <= b Returns true if a is less than or equal to b

a > b Returns true if a is greater than b

a >= b Returns true if a is greater than or equal to b

a <> b Returns true if a is different from b

Manual of pseudocode

 www.renatomite.it P-8

Logical operators

The logical operators act on bool values and return a bool value, they can be written

with a word or a symbol.

a and b a & b Returns true if both a and b are true

a or b a | b Returns true if at least one among a and b is true

a xor b a ' b Returns true if only one among a and b is true

not a ! a Returns true if a is false, false if a is true

You will need comparison and logical operators to make choices that determine the

path of an algorithm.

Instruction IF

The instruction IF verifies a condition with bool value and executes one or more

instructions if the value of condition is true.

if condition

 instruction(s)

end if

The instructions to be executed belong to block if and are written between if and

end if with an indentation.

If you want to execute instructions also when the verification fails, you can add an

else before end if.

if condition

 instruction(s) block if

else

 instruction(s) block else

end if

Manual of pseudocode

 www.renatomite.it P-9

Between block if and block else, it is possible to add one or more blocks else if that

verify other conditions and execute the instructions inside them if the verification

succeed. If a condition returns true, the instructions of that block are executed and

the next conditions are not verified. The instructions of block else, if it is present,

will be executed only if all verifications fail.

if condition1

 instruction(s) block 1

else if condition2

 instruction(s) block 2

else if condition3

 instruction(s) block 3

…

else if conditionN

 instruction(s) block N

else

 instruction(s) block else

end if

If a block contains only one instruction to execute, this instruction can be written

after the verification placing the keyword do before.

if condition do instruction

else if condition1 do instruction

else do instruction

If the last block, whatever it is, is written with the keyword do, end if is omitted.

Manual of pseudocode

 www.renatomite.it P-10

Example: Did the tire dealer say you to check the pressure of a wheel and if it is low,

to change the wheel because it belongs to a defective lot? Here they are the

instructions:

var car kitt = MyCar

var number p

p = kitt.wheels(76450927).pressure

if (p < wheel._normalPressure) do kitt.changeWheel(76450927)

Instruction CHECK

The instruction CHECK is similar to instruction IF but compares one value with others

and if a comparison is true, executes the instructions of its block and stops

comparing.

check a

is j

 instruction(s) block 1

is k

 instruction(s) block 2

…

is z

 instruction(s) block N

else

 instruction(s) block else

end check

After the keyword is there is a value j, k... z (value, constant, variable, property,

result of a function, result of another operation) to be compared with the value of a

(value, constant, variable, property, result of a function, result of another

operation). If a is equal to one of the values, the relative block of instructions is

executed and no other next comparison is verified.

Manual of pseudocode

 www.renatomite.it P-11

An instruction is can verify the equality of a with more values separated by a

comma:

check a

is w, x, y

 instruction(s) block 1

is z

 instruction(s) block 2

end check

In this case the block of instructions is executed if a is equal to one of the values

listed.

You can insert comparison operators different than equality between is and the

value, and more comparisons separated by a comma.

check a

is < j

 instruction(s) block 1

is k, <= s

 instruction(s) block 2

…

is >= z

 instruction(s) block N

else

 instruction(s) block else

end check

In this case the block of instructions is executed if one of the comparisons after is

returns true and no other next comparison is verified.

The instructions of block else, if it is present, will be executed if no comparison is

true.

Manual of pseudocode

 www.renatomite.it P-12

Instruction FOR

The instruction FOR creates a loop that executes a block of instructions more times

changing a numeric variable in a range of values.

for a = b to c

 instruction(s)

end for

The variable a gets the value of b and the block of instructions is executed each

time, adding one unit (1), until the variable a contains the value c in the last

execution.

You can specify the value that changes the variable a with keyword go:

for a = b to c go x for a = b to c go -x

instruction(s) instruction(s)

end for end for

If the value of go is positive or omitted (that is equal to 1), the value b must be less

than value c, if b is equal to c the instructions are executed only one time, if b is

greater than c the instructions are never executed.

If the value of go is negative, the value b must be greater than value c, if b is equal

to c the instructions are executed only one time, if b is less than c the instructions

are never executed.

You can choose to interrupt a loop for with keyword break put inside the block of

instructions:

for a = b to c

 instruction(s)

 break

 instruction(s)

end for

Manual of pseudocode

 www.renatomite.it P-13

If the variable a has already been created, after the loop it will contain the last value

it got, or the value that it had if the instructions have not been executed. If the

variable a has not been created, it will be created by the instruction for and it exists

only within the loop.

As an example, the instruction for can be used to check all the wheels of the car and

inflate them if necessary.

var number p

for i = 0 to (kitt.wheels.length - 1)

 if (kitt.wheels[i].pressure < wheel._normalPressure)

 p = wheel._normalPressure - kitt.wheels[i].pressure

 kitt.wheels[i].inflate(p)

 end if

end for

Instruction FOR EACH

The instruction FOR EACH is a variant of the instruction FOR that you can use to

execute a block of instructions for each object of an array.

for each a in b

 instruction(s)

end for

The instruction for each executes the instructions in it for each item of array b

according the index order, assigning each time the item to variable a. If the array is

empty, the instructions are not executed.

If the variable a has already been created, after the loop for each it will contain the

last value it got, or the value that it had if the instructions have not been executed.

Manual of pseudocode

 www.renatomite.it P-14

If the variable a has not been created, it will be created by the instruction for each

and it exists only within the loop.

Therefore the previous example can be rewritten in this way:

var number p

for each r in kitt.wheels

 if (r.pressure < wheel._normalPressure)

 p = wheel._normalPressure - r.pressure

 r.inflate(p)

 end if

end for

Instruction LOOP

The instruction LOOP creates a loop that executes a block of instructions zero, one

or more times according to a bool value specified.

while a loop

instruction(s) instruction(s)

break break

loop while a

The keyword while analyzes a bool value a (value, constant, variable, property,

result of a function, result of a logic operation or comparison), the loop continues if

the instruction while finds a equal to true and stops with keyword break or when

while finds a equal to false. If a is already false, the instructions of the block

are executed one time if while is written at end of block, otherwise the loop is not

executed.

Manual of pseudocode

 www.renatomite.it P-15

until a loop

instruction(s) instruction(s)

break break

loop until a

The keyword until analyzes a bool value a (value, constant, variable, property, result

of a function, result of a logic operation or comparison), the loop continues if the

instruction until finds a equal to false and stops with keyword break or when

until finds a equal to true. If a is already true, the instructions of the block are

executed one time if until is written at end of block, otherwise the loop is not

executed.

Functions and instruction RETURN

As already seen, the result of a function is assigned to a variable with the

assignment operator (=):

x = function()

Functions that are not null return a value with the instruction RETURN.

Example:

number func calcFillUpCost(car a, number price-per-liter)

 var number liters-to-buy

 liters-to-buy = (a._tankCapacity - a.liters-in-tank)

 return (liters-to-buy * price-per-liter)

end func

var car kitt = MyCar

var number cost

cost = calcFillUpCost(kitt, 1.80)

Example of algorithm

 www.renatomite.it E-1

Example of algorithm

Here the function atTrafficLight() written using the objects car and trafficLight

with constants, properties and functions described in the notes below.

Notes

car

 bool get prop rightOfWay

Gets a value that indicates if the car has the right of way.

 bool get prop running

Gets a value that indicates if the car is running.

 null func go()

It makes the car go.

 null func slowdown()

It slows down the car.

 null func stay()

The car stays still.

 null func stop()

It stops the car.

trafficLight

 _none = 0 # Constant that represents none of the lights

 _green = 1 # Constant that represents the green light

 _yellow = 2 # Constant that represents the yellow light

 _red = 3 # Constant that represents the red light

 number get prop light

Gets the value of the light currently on (see constants).

 bool get prop flashing

Gets a value that indicates if the light is flashing.

Example of algorithm

 www.renatomite.it E-2

Algorithm

null func atTrafficLight (car a, trafficLight s)

 until ((s.light == s._green) or (s.light == s._none))

 if a.running # Car arrives at the traffic light

 check s.light

 is s._yellow

 if s.flashing do break

 a.slowdown()

 a.stop()

 is s._red

 a.slowdown()

 a.stop()

 end check

 else do a.stay() # Stays still at traffic light

 loop

 # Check right of way

 until a.rightOfWay

 a.stay()

 loop

 a.go() # Passes

end func

Description

The function enters in a loop if the light of traffic light x is yellow or red, in the loop

it stops the car y or keeps the car still until the light change. It interrupts the loop if

the light is yellow and flashes.

When the traffic light is off or is flashing, when the light is or becomes green, the

execution proceeds up to the loop that verifies the right of way and the car passes

as soon as it has the right of way.

Matt's notes

 www.renatomite.it M-1

Matt's notes

I need a function falseAlarm with this definition:

null func falseAlarm (PNSDevice pns, UserBody body)

where I pass you the objects pns and body, the first is an object PNSDevice that

represents the PNS worn by the man I want to save, the second is an ojbect

UserBody that represents the man and his body values.

Here it is what I know about the HOB system:

BodyParam

It represents a vital parameter of human body and it is used to retrieve data from

PNS.

There are many of them, but so far I know only these constants that identify (see

property id) the corresponding vital parameters:

 _HeartRate = 9 # Heartbeat

 _BloodPressure = 13 # Blood pressure

 _LungsRate = 15 # Respiratory rate

 _LiverStatus = 206 # Liver general status

 _Temperature = 332 # Body temperature

 _BladderStatus = 674 # Bladder general status

Properties:

 number get prop id

Gets the number that identifies the parameter.

Matt's notes

 www.renatomite.it M-2

 number get prop criticalTolerance

Gets the current tolerance of the body for the vital parameter. If the value

of vital parameter is near to the critical value inside this tolerance (see

criticalValue and insideTolerance), the value can become critical.

 number get prop criticalValue

Gets the critical value for the vital parameter. If the vital parameter is at

critical value, the PNS deems the parameter at risk.

 bool get prop isDangerous

Gets a value that indicates if a critical value can be dangerous.

For all the parameters I know, except _BladderStatus, the property

isDangerous returns true.

Functions:

 bool func insideTolerance(number value)

Returns true if the specified value is inside the range of critical tolerance.

UserBody

 params array of BodyParam [] (number id)

Array of vital parameters, you can retrieve them by index or identifier (see

BodyParam). params has only the property length.

 bool get prop danger

Gets a value that indicates if the body is in danger. This property returns

true and the PNS sets off an alarm with dangerous vital parameters

(isDangerous == true) in one of these combinations:

- at least three parameters reach the critical value

(see PNSDevice.dangerParamCount)

Matt's notes

 www.renatomite.it M-3

- two parameters reach the critical value and at least six parameters

remain inside critical tolerance for at least 20 readings of data (see

BodyParam.insideTolerance and PNSLog.average).

PNSDevice

 number get prop dangerParamCount

Gets the number of vital parameters that currently have reached the

critical value.

 PNSLog func getLog(number paramID)

Returns an object PNSLog that interacts with the vital parameter specified

by paramID.

PNSLog

It represents a container of data that interacts with a vital parameter.

 values array of number []

Array of all values read, stored in reverse chronological order, the most

recent values have lower index, so values[0] is always the last value read.

values has the prooperty length and the function average() that returns

the average of all the values.

 number get prop lastValue

Gets the last value read, it is equal to values[0].

 bool get prop steady *1 *2 (before)

Gets true if the value of parameter is stable, false if it is changing.

 bool get prop goingCritical *1 *2 (before)

Gets true if the value of parameter is approaching the range of critical

tolerance.

Matt's notes

 www.renatomite.it M-4

 bool get prop insideCritical *1 *2 (before)

Gets true if the value of parameter is inside the range of critical tolerance.

 bool get prop isCritical

Reads a new value and gets true if the value is equal to the critical value.

 number func average(number n)

Returns the average of the last n values stored in the log.

 null func readNewValue()

Performs a new reading and stores the value of the vital parameter.

 null func storeValue(number value, number pass) *2 (after)

Stores a value in the log as if it had been read from the body, to call this

function you need a numeric pass.

*1 The value of property (true or false) is determined according to the average

(see PNSLog.average) of the last 20 values read.

*2 Each time these properties and functions are used, the PNS performs a reading

of the parameter value automatically, before or after using them, so it inserts

the value in the array values and updates the status of the parameter that, as

already said for *1, is determined by the average of last values read.

Bug: Readings repeated in a short time store values higher than the real values.

Tips: use the function readNewValue to push vital parameters to their critical value,

repeated readings store higher values but they also affect the health of the man

pushing it to a critical status for real, therefore do not go too far with the parameter

_HeartRate, the heart of the man is beaten-up.

I have a pass _tmp-pass for the function storeValue, you can use it only one time

because after that it is not valid anymore.

Matt's solution

 www.renatomite.it S-1

Matt is in one of those situations in which there is not just one solution.

Every programmer knows that an algorithm can be written in different ways or can

be improved, therefore do not think of Matt's solution but write your own solution

and have fun.

You are ready to play.

Use the hashtag #aphgame to share your solution,

talk about the game, challenge your friends…

Did you have fun?

Tell me

Twitter @renatomite GooglePlus +Renato Mite

Turn the page and see Matt's solution.

http://twitter.com/renatomite
http://plus.google.com/+RenatoMite/posts

Matt's solution

 www.renatomite.it S-2

Algorithm

null func falseAlarm (PNSDevice pns, UserBody body)

 var number avg

 var number gap

 var number num = 10000

 var number aid = -1

 var PNSLog logs[4]

 var number count

 var number pass = _tmp-pass

 # search for a dangerous parameter at risk

 for each param in body.params

 if param.isDangerous and (param.id <> BodyParam._HeartRate) and

 (param.id <> BodyParam._LungsRate) and (param.id <> BodyParam._BloodPressure)

 logs[0] = pns.getLog(param.id)

 avg = logs[0].average(20)

 gap = (param.criticalValue - avg)

 if (gap <= param.criticalTolerance) # gap is inside the range of critical tolerance

 if (gap <= 0) # average greater than the critical value

 aid = param.id

 break # exits the loop and uses this parameter

 else if (gap < num)

 num = gap

 aid = param.id # uses this parameter if it does not find a better one

 end if

 end if

 end if

 end for

 if (aid < 0) do aid = BodyParam._Temperature

 # pushes the parameters to their critical value

 num = 0

Matt's solution

 www.renatomite.it S-3

 logs[0] = pns.getLog(BodyParam._HeartRate)

 logs[1] = pns.getLog(BodyParam._LungsRate)

 logs[2] = pns.getLog(BodyParam._BloodPressure)

 logs[3] = pns.getLog(aid)

 loop

 count = 0

 logs[1].readNewValue()

 logs[2].readNewValue()

 logs[3].readNewValue()

 if logs[1].isCritical do count += 1

 if logs[2].isCritical do count += 1

 if logs[3].isCritical do count += 1

 if (count > 1)

 if logs[0].insideCritical and (pass <> -1)

 logs[0].storeValue(body.params(BodyParam._HeartRate).criticalValue * 1.3, pass)

 pass = -1

 end if

 end if

 num += 1

 until ((num == 1000) or body.danger)

end func

Description

First the algorithm executes a for each of the vital parameters to search for a
parameter whose average is greater than its critical value or the most near
possible, then executes a loop that repeatedly reads the values of the parameters
_LungsRate, _BloodPressure and the parameter found (in absence of that, uses
_Temperature) to exploit the bug that stores higher values. When in the loop at
least two of the parameters read are critical, it writes in the log of _HeartRate a
value 30% greater than the critical one if the parameter is inside the range of
critical tolerance. In this way at least three parameters should have reached the
critical value and the PNS should set off the alarm. The loop ends when the PNS
sets off the alarm or after 1000 iterations, because if it continued indefinitely it
could kill the man before his killer does.

Get to know Apoptosis

Apoptosis is my first book, a sci-fi novel that I usually introduce in this way:
A medical researcher, a revolutionary diagnostic innovation, a digital network for
public health and a hacker calling everything into question... before the Apoptosis.

PLOT
The company HOB Medicines revolutionised medicine with the Pathoneuroscopy,
the diagnostic investigation through body neural system, and created the PNS, a
device for personal diagnosis connected to
the P.A. Net, the digital network for public
health.
Everybody wears a PNS, but somebody
doubts its efficiency: George Tobell, the
researcher that led the way for
Pathoneuroscopy, affected by a
neuropathy caused by a prototype of PNS;
and Matthew Jaws, an hacker obsessed by
HOB which wants to get to the bottom of
destiny of harbingers, legendary sick
persons object of HOB experimentation.
When George dies, Matthew will take
possession of his treatise on
Pathoneuroscopy that sheds some lights on
secrets of HOB.
Matthew gets hired in the control room of
the P.A. Net in the HOB Building, there
works also the analyst who has made an
agreement with the tycoon of HOB to catch
the hacker of their net. In the laboratories
of the skyscraper works a young researcher, Jason Stemberg, which will discover
that anyone using the PNS is in danger.
The paroxysm is imminent and will entangle them all.

Now Apoptosis is available only in Italian. If you think it is worth a reading,
spread the word, a publisher can notice it and have it translated in your language.

Thank you.
Renato Mite

www.renatomite.it

http://www.renatomite.it/

